

For Researchers

Hacking cancer cell metabolism

2 comments (1) 11 mins read

Share this article

precision diets to test whether modulating specific metabolic pathways could enhance the effects of existing cancer treatments. We spoke with Professor Oliver Maddocks to find out how the startup came about, and how he thinks hacking cancer metabolism with targeted dietary interventions could help cancer treatments work better. It was way back in the 1920s when cancer metabolism was first identified as a possible therapeutic target.

Restricting specific amino acids from cancer cells has been shown to slow

tumour growth and sharpen the effects of chemotherapy and radiotherapy in

studies using mice and cell lines. Now, startup Faeth Therapeutics want to create

antagonist could block nucleotide synthesis. Folate antagonists and other "antimetabolite" drugs became the vanguard of the chemotherapy era and improved survival for millions of people with cancer. In subsequent years, however, genomics took centre-stage in cancer

Otto Warburg had observed that cancer cells prefer to metabolise glucose anaerobically,

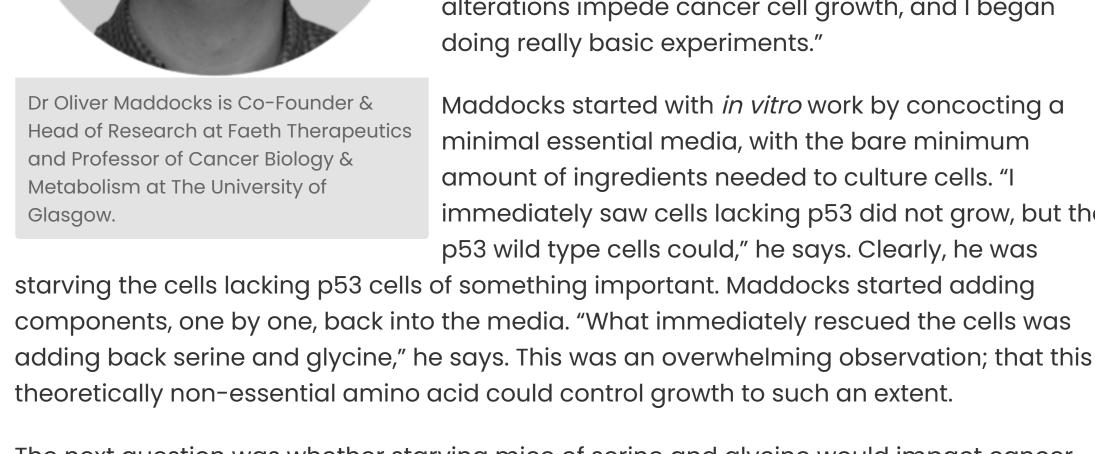
even when oxygen is present. Later, in the 1940s, Sidney Farber discovered that a folate

research. It was, of course, a successful approach leading to effective drugs targeted at faulty gene products. More recently though, largely thanks to the advent of metabolomics, cancer metabolism is once again being turned to. Professor Oliver Maddocks and his then-supervisor Professor Karen Vousden, former chief scientific officer at Cancer Research UK – now running her lab at the Francis Crick Institute in London – found that starving cancer of selected amino acids in vitro and in mice slowed tumour growth and improved survival, with landmark *Nature* papers in 2012 and 2017.

metabolism of cancer cells hard enough to slow growth and to make them more sensitive to standard therapies. "There was a natural coming together of these three groups of scientists," says Maddocks. "There were nine of us around the table, saying we all think this is fundamentally important, we need to start a company to translate this."

Around the same time, two other leading cancer research groups in the UK and US were

coming to similar conclusions – that specific nutrition alterations could selectively hit the


This transatlantic meeting of minds gave birth to Faeth Therapeutics in 2019. The startup has three routes that it hopes will take advantage of cancer metabolism - pairing existing anti-cancer drugs with precision diets restricted for specific amino acids to weaken the cancer, along with a digital app with direct dietician support to help patients stick with the diet. Fast forward to today, and the start-up has three early-phase clinical trials ongoing, a

busy R&D department stocking up the pipeline, and \$67 million of investment to make it all

happen. It's early days and the clinical trials are designed to first test whether this approach is safe and acceptable to patients, and then to detect any early signs that it actually has an effect on the cancer. Mind the metabolism Originally a pharmacist, Maddocks spent 18 months as a Fulbright scholar in the US before returning to the UK in 2010 to start a postdoc in Vousden's lab at the CRUK Beatson Institute in Glasgow. The lab was focussed on the p53 tumour suppressor gene and was getting more interested in cancer metabolism just as Maddocks arrived.

approached this with a very blank sheet of paper and thought, how can we attack this re-emerging field of cancer metabolism?" says Maddocks. "We wanted to look beyond glucose, which is required by all cells in the body, so we started asking what other specific nutrient alterations impede cancer cell growth, and I began

doing really basic experiments."

diet. They forged ahead anyway.

cancer cells of certain amino acids.

many people's comfort zone," says Maddocks.

asparagine in the diet of mice reduced metastasis.

The next question was whether starving mice of serine and glycine would impact cancer growth. This went against conventional wisdom at the time. There was no point removing serine and glycine from the diet, so the dogma went, since the organism could synthesize them anyway and was not reliant on sourcing these non-essential amino acids from the "The way Karen and I thought about this was, let's assume we don't know the answer before we talk ourselves out of doing an experiment," says Maddocks.

Quickly dividing cancer cells have bigger - and

metabolic difference be exploited? "Karen and I

sometimes different – nutrient requirements than other

healthy cells in the tissue. The question was, could this

Maddocks started with in vitro work by concocting a

immediately saw cells lacking p53 did not grow, but the

minimal essential media, with the bare minimum

amount of ingredients needed to culture cells. "I

p53 wild type cells could," he says. Clearly, he was

depletion had an impact in the mice, despite the ability to manufacture the amino acids elsewhere in the body. Using *in vitro* work, tumour organoids and mice, Maddocks and Vousden filled in various mechanistic elements of the story over the next few years, continuing to collaborate after

Maddocks received funding from CRUK to set up his own cancer metabolism lab at the

University of Glasgow in 2015. Maddocks and Vousden were already convinced that their

discovery could be translated into a treatment. Together with the commercialisation arm

of CRUK, Cancer Research Horizons, they patented the process of selectively starving

He formulated a tailored diet with a similar nutrient profile to the cell culture media and fed

it to mice. "Lo and behold, just changing two small parts of the diet really slowed tumour

Liquid chromatography-mass spectrometry (LC-MS) analysis of the serum from mice fed

the restricted diet showed that levels of serine and glycine halved – evidence that dietary

growth and allowed the mice to survive for longer," he says.

"You start off as a young scientist quite idealistic, thinking you should just publish findings, not worry about patents, and let the whole world have them," says Maddocks, "but you learn that if you can't patent, it becomes really difficult to translate because the clinical translation process is so resource intensive."

Despite their breakthrough academic discoveries in how selective amino acid depletion

between 2010 and 2017, with few other groups working in the space. "It was too far outside

can starve cancer cells, Maddocks and Vousden were feeling a little lonely in the years

However, things began to change in 2018, when star US cancer researcher Lew Cantley

showed that, in mice, specific alterations in systemic metabolism were responsible for

blunting the response to PI3K inhibitors. By suppressing the insulin feedback loop

responsible with a low-carbohydrate diet, it significantly boosted effectiveness of anticancer PI3K inhibitors. Around the same time, Greg Hannon's functional genomics lab at the CRUK Cambridge Institute showed using in vitro and mouse breast cancer models, that metastasis is influenced by the availability of the non-essential amino acid asparagine, and that limiting

"The three groups, when you put it all together, provided a thematic discovery around

selective diet, tumour metabolism, systemic metabolism, targeted therapies and chemotherapies," says Maddocks. Faeth takes form

says, bringing a startup to life was an itch he just had to scratch.

and incorporate a company."

then took on the role of chief scientific officer.

about their preferences, help them comply."

The Faeth approach

Converging towards a common conclusion

who among the nine cofounders would take the lead to push the company forward into existence? As an early career principal investigator, a pharmacist, and with some previous experience in industry, Maddocks was ideally placed to take some time aside from his academic research to lead the fledgling company. "I have this pharmacy background, molecular biology of cancer and then cancer

metabolism, which gave me a translational way of thinking about things," he says. Plus, he

The following months and years were a whirlwind of conversations with venture capitalists

until they secured enough seed investment in 2019 to get off the ground. "To begin with, it

was about trying to get the funding, having conversations about raising money, putting a

deck together to present to potential investors. And also, figuring out how you actually start

When the three research groups decided to form a startup, an immediate challenge was:

Maddocks. "However, success is very little about how bright you are," he says, "and much more about how hard you work." A thumbs up from CRUK and the university to spend a portion of his time on the new company helped. So much so in fact that, when needed, Maddocks took a sabbatical from

founded in 2019, and was aptly named Faeth, meaning "nutrition" in Welsh. Getting CEO &

Co-Founder Anand Parikh onboard early was a critical step forward, says Maddocks, who

There are three main aspects to the treatment approach Faeth wants to test: therapy, diet

Maddocks. "And they get a digital health app, which will coach them through the diet, learn

and digital support. "Instead of just giving someone a drug, they will get the therapeutic,

Each diet is precision engineered to selectively deplete certain key amino acids, with the

aim of weakening a patient's particular cancer so that standard treatments become more

effective – and that will be tested in clinical trials, in specific cancer types, looking at safety

they will get food tailored to their treatment regimen, delivered to their door," says

research to concentrate fully on the endeavour. The new transatlantic company was

Throughout all of this, Maddocks was juggling his academic research and setting up the

company, not to mention two young kids and a pandemic. This was a lot of work, admits

and signals of drug efficacy and whether a patient's genetic makeup affects these. This is where Faeth differs from the myriad of dubious diets and food supplements that claim to treat cancer. "People have come up with ideas about nutrients, and then applied it in a very nontargeted way across a bunch of different cancers or different genotypes, without that real mechanistic insight into if, or why, that dietary intervention works," says Maddocks. Faeth

genetically-driven focus to this question of diet," explains Maddocks, "We're not going to

prescribe or suggest things for people unless we know it's validated through clinical trials

Three clinical trials are already underway. Two are investigating standard care medications

for metastatic pancreatic cancer and metastatic colorectal cancer in combination with a

nonessential amino acid restriction diet. In this diet, patients receive a very low protein diet

composed of whole foods, supplemented by a specially formulated shake that is free from

The third trial is an example of Faeth's alternative approach – testing an investigational

drug in combination with a personalised diet. In this phase 1b trial, Faeth is investigating the

wants to change that. "We're bringing our molecular biology, cancer metabolism,

anticancer ability of an in-licensed experimental PI3K inhibitor called serabelisib, combined with an insulin suppressing diet in people with advanced solid tumours with PIK3CA mutations. Stocking the pipeline As the team wait for results from the clinical trials, Faeth's R&D department – supported by Vousden and the other scientific co-founders – are busy designing possible future studies.

Their discovery platform, dubbed MetabOS, combines functional genomics, metabolomics

and machine learning. The platform zooms in a tumour's genotype and organ to figure out

Faeth's multidisciplinary team certainly has an uncommon profile. "It's a unique company,

Molecular biologists can take the results of a nutrient starvation experiment, go straight to

the dieticians who assess whether humans can tolerate depletion of the nutrient in the diet,

which nutrients can be selectively deleted to sensitise the tumour to a therapy. "We're

where you have molecular biologists working in labs doing cancer metabolism, doing

already bringing new programmes through preclinical research," says Maddocks.

molecular biology, but you also have dieticians and chefs," says Maddocks.

and from there work with the company chefs who will start creating meals, recipes and menus for initial taste-testing by the rest of the company. "You have to iterate many times Time will tell if Faeth's clinical trials show positive results – but it's clear that translation of

Click here for more on diet and cancer.

Author:

respiratory biology.

certain amino acids.

for that particular type of cancer."

around that until you get a diet that actually does the thing you want it to do," says Maddocks. discovery science is absolutely vital to have an impact on patients. As such, it is equally vital to support researchers as they embark on their entrepreneurial endeavours. Explore how Cancer Research Horizons can help you translate your work

in human cancer patients. There are clinical trials underway to establish if a nonessential amino acid restriction diet alongside conventional cancer therapy will improve the efficacy of those treatments in human cancer patients.

Disclaimer

As there is currently no evidence in humans that a restricted diet has benefits, it is not recommended that cancer patients self-administer a restricted diet. The research of Dr Maddocks and the rest of the Faeth Therapeutics team has not been shown to work

Fiona Dunlevy is a freelance medical writer. She has been medical

writing since 2010, following doctoral and postdoctoral research in

Comments

Lea

Ceejay

31 January 2023 Like many other cancer patients I am interested in this concept of dietary modification to attack cancer cells via metabolism alongside conventional therapy. But considering

this is CRUK article, promoting UK scientists role, it was very disappointing to then click onto Faeth website and see all the curent clinical trial locations are only in USA.